Breaking News

upsc-logo

UPSC IES/ESE Electrical Engineering Syllabus: IES/ESE Electrical Engineering (Paper-I/II) Exam Pattern & Syllabus

UPSC IES/ESE Electronics & Telecommunication Engineering Syllabus

Union Public Service Commission (UPSC), New Delhi has conducted time to time Engineering Services Examination (IES/ESE) for Class-1 Officer recruitment. Aspirant candidates are always looking for UPSC IES/ESE Electronics & Telecommunication Engineering syllabus for preparation. In this page we provide tips for clear this exam through UPSC IES/ESE Electronics & Telecommunication Engineering Syllabus.

UPSC IES/ESE Electronics & Telecommunication Engineering Syllabus: Contents for syllabi of both the Papers together for Stage-I objective type Paper–II and separately for Stage-II Conventional type Paper-I and Paper – II.

PAPER-I

1. Basic Electronics Engineering: Basics of semiconductors; Diode/Transistor basics and characteristics; Diodes for different uses; Junction & Field Effect Transistors (BJTs, JFETs, MOSFETs); Transistor amplifiers of different types, oscillators and other circuits; Basics of Integrated Circuits (ICs); Bipolar, MOS and CMOS ICs; Basics of linear ICs, operational amplifiers and their applications-linear/non-linear; Optical sources/detectors; Basics of Opto electronics and its applications.
2. Basic Electrical Engineering: DC circuits-Ohm’s & Kirchoff’s laws, mesh and nodal analysis, circuit theorems; Electro-magnetism, Faraday’s & Lenz’s laws, induced EMF and its uses; Single-phase AC circuits; Transformers, efficiency; Basics-DC machines, induction machines, and synchronous machines; Electrical power sources- basics: hydroelectric, thermal, nuclear, wind, solar; Basics of batteries and their uses.
3. Materials Science: Electrical Engineering materials; Crystal structure & defects; Ceramic materials-structures, composites, processing and uses; Insulating laminates for electronics, structures, properties and uses; Magnetic materials, basics, classification, ferrites, ferro/para-magnetic materials and components; Nano materials-basics, preparation, purification, sintering, nano particles and uses; Nano-optical/magnetic/electronic materials and uses; Superconductivity, uses.
4. Electronic Measurements and Instrumentation: Principles of measurement, accuracy, precision and standards; Analog and Digital systems for measurement, measuring instruments for different applications; Static/dynamic characteristics of measurement systems, errors, statistical analysis and curve fitting; Measurement systems for non-electrical quantities; Basics of telemetry; Different types of transducers and displays; Data acquisition system basics.
5. Network Theory: Network graphs & matrices; Wye-Delta transformation; Linear constant coefficient differential equations- time domain analysis of RLC circuits; Solution of network equations using Laplace transforms- frequency domain analysis of RLC circuits; 2-port network parameters-driving point & transfer functions; State equations for networks; Steady state sinusoidal analysis.
6. Analog and Digital Circuits: Small signal equivalent circuits of diodes, BJTS and FETs; Diode circuits for different uses; Biasing & stability of BJT & JFET amplifier circuits; Analysis/design of amplifier- single/multi-stage; Feedback& uses; Active filters, timers, multipliers, wave shaping, A/D-D/A converters; Boolean Algebra& uses; Logic gates, Digital IC families, Combinatorial/sequential circuits; Basics of multiplexers, counters/registers/ memories /microprocessors, design& applications.

PAPER-II

1. Analog and Digital Communication Systems: Random signals, noise, probability theory, information theory; Analog versus digital communication & applications: Systems- AM, FM, transmitters/receivers, theory/practice/ standards, SNR comparison; Digital communication basics: Sampling, quantizing, coding, PCM, DPCM, multiplexing-audio/video; Digital modulation: ASK, FSK, PSK; Multiple access: TDMA, FDMA, CDMA; Optical communication: fibre optics, theory, practice/standards.
2. Control Systems: Classification of signals and systems; Application of signal and system theory; System realization; Transforms& their applications; Signal flow graphs, Routh-Hurwitz criteria, root loci, Nyquist/Bode plots; Feedback systems-open &close loop types, stability analysis, steady state, transient and frequency response analysis; Design of control systems, compensators, elements of lead/lag compensation, PID and industrial controllers.
3. Computer Organization and Architecture: Basic architecture, CPU, I/O organisation, memory organisation, peripheral devices, trends; Hardware /software issues; Data representation& Programming; Operating systems-basics, processes, characteristics, applications; Memory management, virtual memory, file systems, protection & security; Data bases, different types, characteristics and design; Transactions and concurrency control; Elements of programming languages, typical examples.
4. Electro Magnetics: Elements of vector calculus, Maxwell’s equations-basic concepts; Gauss’, Stokes’ theorems; Wave propagation through different media; Transmission Lines-different types, basics, Smith’s chart, impedance matching/transformation, S-parameters, pulse excitation, uses; Waveguides-basics, rectangular types, modes, cut-off frequency, dispersion, dielectric types; Antennas-radiation pattern, monopoles/dipoles, gain, arrays-active/passive, theory, uses.
5. Advanced Electronics Topics: VLSI technology: Processing, lithography, interconnects, packaging, testing; VLSI design: Principles, MUX/ROM/PLA-based design, Moore & Mealy circuit design; Pipeline concepts & functions; Design for testability, examples; DSP: Discrete time signals/systems, uses; Digital filters: FIR/IIR types, design, speech/audio/radar signal processing uses; Microprocessors & microcontrollers, basics, interrupts, DMA, instruction sets, interfacing; Controllers & uses; Embedded systems.
6. Advanced Communication Topics: Communication networks: Principles /practices /technologies /uses /OSI model/security; Basic packet multiplexed streams/scheduling; Cellular networks, types, analysis, protocols (TCP/TCPIP); Microwave & satellite communication: Terrestrial/space type LOS systems, block schematics link calculations, system design; Communication satellites, orbits, characteristics, systems, uses; Fibre-optic communication systems, block schematics, link calculations, system design.

Tips for IES/ESE Electronics & Telecommunication Engineering Preparation: IES/ESE written examination comprises of both objective and conventional type questions.

– Prelims examination is purely objective in nature and comprises of two papers:
Paper-1: General Studies and Engineerign Aptitude,
Paper-2: Technical Domain paper. Hence, theory, conceptual knowledge and problem-solving techniques are equally important.
– ESE requires a slightly more focus on developing the theoretical base and concepts as compared to GATE and other PSU Examinations. Intense knowledge of the subjects, strong basics, and clear concepts help in better understanding of the subjects and prove to be instrumental in getting good scores.
– Good writing skills, excellent presentation, subjective theory, derivations, diagrams and explanations well supported with diagrams help to fetch good marks in conventional or subjective paper of ESE Main exam. – Be aware of the Negative marking pattarn of the exam, weightage, exam duration and marks per question. Always make a habit of referring previous years’ question papers.
– Short Cut Techniques: In attempting the questions of objective paper, use short techniques for numerical solving instead of traditional approach so as to gain speed and attempt maximum questions. Calculators are not allowed in the Prelims examination hence practice of performing calculations without calculators is advised.

Candidates also visit UPSC official website for download PDF version of UPSC IES/ESE Electronics & Telecommunication Engineering Syllabus.

Leave a Reply